
Using	Inheritance	to	Share	
Implementations

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	11.2	

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Key	Points	for	Lesson	11.2

• By	the	end	of	this	lesson	you	should	be	able	
to:	
– Identify	common	parts	of	class	implementations
– Generalize	these	common	parts	into	a	superclass
– Identify	the	parts	that	differ,	and	turn	these	into	
abstract	methods.

– Recover	the	original	classes	using	inheritance.

2

The	Real	Power	of	Inheritance

• The	flashing-ball	example	was	a	good	start,	
but	it	didn't	illustrate	the	real	power	of	
inheritance.

• The	real	power	of	inheritance	is	that	it	enables	
you	to	abstract	common	parts	of	the	
implementation of	similar	classes.

• Let's	try	a	somewhat	more	substantial	
example:	11-2-squares.rkt

3

Square%
(define Square%
(class* object% (SBall<%>)

(init-field w) ;; the Wall that the square should
bounce off of

;; initial values of x, y (center of square)
(init-field [x INIT-BALL-X])
(init-field [y INIT-BALL-Y])
(init-field [speed INIT-BALL-SPEED])

; is this selected? Default is false.
(init-field [selected? false])

;; if this is selected, the position of
;; the last button-down event inside this,
;; relative to the square's center.
;; Else any value.
(init-field [saved-mx 0] [saved-my 0])

(field [size 40])
(field [half-size (/ size 2)])

;; register this square with the wall, and use the
;; result as the initial value of wall-pos
(field [wall-pos (send w register this)])

(super-new)

;; Int -> Void
;; EFFECT: updates the square's idea of the wall's
;; position to the given integer.
(define/public (update-wall-pos n)
(set! wall-pos n))

;; after-tick : -> Void
;; EFFECT: updates this square to the state it
;; should be in after a tick.
;; A selected square doesn't move.

(define/public (after-tick)
(if selected?
this
(let ((x1 (next-x-pos))

(speed1 (next-speed)))
(begin
(set! speed speed1)
(set! x x1)))))

;; -> Integer
;; RETURNS: position of the square at the next tick
;; STRATEGY: use the square's cached copy of the
;; wall position to set the upper limit of motion
(define (next-x-pos)
(limit-value
half-size
(+ x speed)
(- wall-pos half-size)))

4

Square%	is	very	 similar	to	Ball%.		I’ve	
marked	the	parts	that	are	different	in	
red.	Everything	else	is	the	same.

Square%	(2)
;; Number^3 -> Number
;; WHERE: lo <= hi
;; RETURNS: val, but limited to the range [lo,hi]
(define (limit-value lo val hi)
(max lo (min val hi)))

;; -> Integer
;; RETURNS: the velocity of the square at the next
;; tick
;; STRATEGY: if the square will not be at its
;; limit, return it unchanged. Otherwise, negate
;; the velocity.
(define (next-speed)
(if
(< half-size

(next-x-pos)
(- wall-pos half-size))

speed
(- speed)))

(define/public (add-to-scene s)
(place-image
(square size
(if selected? "solid" "outline")
"green")
x y s))

; after-button-down : Integer Integer -> Void
; GIVEN: the location of a button-down event
; STRATEGY: Cases on whether the event is in this
(define/public (after-button-down mx my)
(if (in-this? mx my)
(begin
(set! selected? true)
(set! saved-mx (- mx x))
(set! saved-my (- my y)))

this))

;; in-this? : Integer Integer -> Boolean
;; GIVEN: a location on the canvas
;; RETURNS: true iff the location is inside this.
(define (in-this? other-x other-y)
(and
(<= (- x half-size) other-x (+ x half-size))
(<= (- y half-size) other-y (+ y half-size))))

; after-button-up : Integer Integer -> Void
; GIVEN: the location of a button-up event
; STRATEGY: Cases on whether the event is in this
; If this is selected, then unselect it.
(define/public (after-button-up mx my)
(if (in-this? mx my)
(set! selected? false)
this))

5

Square%	(3)
; after-drag : Integer Integer -> Void
; GIVEN: the location of a drag event
; STRATEGY: Cases on whether the square is
; selected. If it is selected, move it so that the
; vector from the center to the drag event is
; equal to (mx, my)
(define/public (after-drag mx my)
(if selected?
(begin
(set! x (- mx saved-mx))
(set! y (- my saved-my)))

this))

;; the square ignores key events
;; returns a nonsense value
(define/public (after-key-event kev) 23)

(define/public (for-test:x) x)
(define/public (for-test:speed) speed)
(define/public (for-test:wall-pos) wall-pos)
(define/public (for-test:next-speed) (next-speed))
(define/public (for-test:next-x) (next-x-pos))

))

6

Can	we	unify	the	common	code?
• Looking	at	Square% and	Ball%,	we	see	that	
many	of	the	method	definitions	have	a	lot	in	
common.		

• Let's	try	to	move	the	common	parts	into	a	
new	class,	which	we'll	call	
DraggableWidget%.

• Then	we'll	have	Square% and	Ball% both	
inherit	from	DraggableWidget%.

• Let's	see	what	happens:

7

What	about	the	methods	that	are	
different?

• We	turn	these	into	abstract	methods.
• An	abstract	method	is	a	method	that	is	not	defined	in	
the	superclass,	but	must	be	defined	in	any	subclass	
that	will	have	objects.

• For	example,	we	write	(abstract	add-to-scene).
• This	declares	add-to-scene	to	be	an	abstract	method.
– To	declare a	name	means	to	introduce	a	name	so	that	it	
can	be	referred	to	in	the	code,	but	to	leave	the	definition	
until	later

– In	this	case,	the	definition	will	be	supplied	by	the	subclass.
• Let's	look	at	the	code:

8

We	sometimes	 call	abstract	methods	 "hooks"	
because	they	act	like	hooks	 on	which	we	can	

hang	code	in	the	subclass.

DraggableWidget%	(1)
(define DraggableWidget%
(class* object%

(SBall<%>)

;; the Wall that the ball should bounce off of
(init-field w)

;; initial values of x, y (center of ball)
(init-field [x INIT-BALL-X])
(init-field [y INIT-BALL-Y])
(init-field [speed INIT-BALL-SPEED])

; is this selected? Default is false.
(init-field [selected? false])

;; if this is selected, the position of
;; the last button-down event inside this,
;; relative to the widget's center.
;; Else any value.
(init-field [saved-mx 0] [saved-my 0])

;; this is specific to Ball%
; (field [radius 20])

;; register this ball with the wall, and use the
;; result as the initial value of wall-pos
(field [wall-pos (send w register this)])

(super-new)

;; Int -> Void
;; EFFECT: updates the widget's idea of the wall's
;; position by setting it to the given integer.
(define/public (update-wall-pos n)
(set! wall-pos n))

;; after-tick : -> Void
;; EFFECT: updates this widget to the state it
;; should be in after a tick.
(define/public (after-tick)
(if selected?
this
(let ((x1 (next-x-pos))

(speed1 (next-speed)))
(begin
(set! speed speed1)
(set! x x1)))))

9

Here	we've	defined	 the	
DraggableWidget%	class	by	taking	the	
Ball%	class	and	commenting	out	all	the	

code	that	is	specific	 to	Ball%.

DraggableWidget%	(2)
;; -> Integer
;; position of the object at the next tick
;; (define (next-x-pos)
;; (limit-value
;; radius
;; (+ x speed)
;; (- wall-pos radius)))

;; Number^3 -> Number
;; WHERE: lo <= hi
;; RETURNS: val, but limited to the range [lo,hi]
(define (limit-value lo val hi)
(max lo (min val hi)))

;; -> Integer
;; RETURNS: the velocity of the widget at the next
;; tick
;; STRATEGY: if the ball will not be at its limit,
;; return velocity unchanged. Otherwise, negate
;; the velocity.
;; (define (next-speed)
;; (if
;; (< radius (next-x-pos) (- wall-pos radius))
;; speed
;; (- speed)))

;; also ball-specific
;; (define/public (add-to-scene s)
;; (place-image
;; (circle radius
;; "outline"
;; "red")
;; x y s))

;; but we need to declare add-to-scene, so that
;; we'll satisfy the interface:
(abstract add-to-scene)

; after-button-down : Integer Integer -> Void
; GIVEN: the location of a button-down event
; STRATEGY: Cases on whether the event is in this
(define/public (after-button-down mx my)
(if (in-this? mx my)
(begin
(set! selected? true)
(set! saved-mx (- mx x))
(set! saved-my (- my y)))

this))

10

By	writing	(abstract	add-to-scene), we	declare	add-to-scene to	be	
an	abstract	method. This	is	needed	to	make	DraggableWidget%	
satisfy	the	SBall<%>	interface.		It	also	means	that	the	system	will	
complain	if	we	try	to	create	an	object	of	class	DraggableWidget%	.

DraggableWidget%	(3)
;; also circle-specific
;; in-this? : Integer Integer -> Boolean
;; GIVEN: a location on the canvas
;; RETURNS: true iff the location is inside this.
;; (define (in-this? other-x other-y)
;; (<= (+ (sqr (- x other-x))
;; (sqr (- y other-y)))
;; (sqr radius)))

; after-button-up : Integer Integer -> Void
; GIVEN: the location of a button-up event
; STRATEGY: Cases on whether the event is in this
; If this is selected, then unselect it.
(define/public (after-button-up mx my)
(if (in-this? mx my)
(set! selected? false)
this))

; after-drag : Integer Integer -> Void
; GIVEN: the location of a drag event
; STRATEGY: Cases on whether the ball is selected.
; If it is selected, move it so that the vector
; from the center to the drag event is equal to
; (mx, my)
(define/public (after-drag mx my)
(if selected?
(begin
(set! x (- mx saved-mx))
(set! y (- my saved-my)))

this))

;; the widget ignores key events
(define/public (after-key-event kev) 23)

(define/public (for-test:x) x)
(define/public (for-test:speed) speed)
(define/public (for-test:wall-pos) wall-pos)
(define/public (for-test:next-speed) (next-speed))
(define/public (for-test:next-x) (next-x-pos))

))

11

But	look	what	happens	when	we	try	to	
run	this!

12

• What	happened?
• next-x-pos is	not	defined	in	
DraggableWidget%	.
• How	can	we	put	it	where	it	will	be	found?

Remember	the	story	about	inheritance	
and	this

• If	a	method	in	the	superclass	refers	to	this,	
where	do	you	look	for	the	method?

• Answer:	in	the	original	object.
• Consider	the	following	class	hierarchy:

13

Ball% =	(class*	object%	(SBall<%>)	
(field	x	y	radius	selected?)
(define/public	 (m1	x)	(send	 this	m2	x))
(define/public	 (m2	x)	“wrong”)

)

FlashingBall% =	(class*	Ball%	(SBall<%>)

(define/override	 (m2	x)	“right”)
...)

(define	b1	(new	FlashingBall%	...))
(send	b1	m1	33)

Searching	for	a	method	of	this

x	=	...
y	=	...
radius	=	...
selected	=	...
time-left	=	...

b1

14

When	we	send	b1 an	m1message,	what	
happens?
1) It	searches	its	own	methods	for	an	m1

method,	 and	finds	 none.
2) It	searches	it	superclass	 for	an	m1

method.		This	time	it	finds	 one,	which	
says	to	send	this an	m2 message.

3) this still	refers	to	b1.	So	b1 starts	
searching		for	an	m2 method.		

4) It	finds	 the	m2	method	in		its	local	table,	
and	returns	the	string	“right”.

Solution:

• Make	next-x-pos a	method	of	Ball%	and	
Square%, and	say

(let ((x1 (send this next-x-pos))
..etc..

15

The	fix	for	next-x-pos
In DraggableWidget%:

(define/public (after-tick)
(if selected?
this
(let ((x1 (send this next-x-pos))

(speed1 (send this next-speed)))
(begin
(set! speed speed1)
(set! x x1)))))

;; to be supplied by the subclasses
(abstract next-x-pos)

In Ball%:

(define/override (next-x-pos)
(limit-value
radius
(+ x speed)
(- wall-pos radius)))

In Square%:

(define/override (next-x-pos)
(limit-value
half-size
(+ x speed)
(- wall-pos half-size)))

16

In	the	superclass,	 we	say	(send	this	next-x-pos)	and	
(abstract	next-x-pos)	,	and	in	each	subclass,	 we	
provide	a	definition	 of	a	next-x-posmethod	that	
works	for	that	subclass.

We	define	the	method	in	the	subclass	 using	
define/override,	since	it	is	overriding	 a	method	
declared	in	the	superclass.	 	This	is	a	peculiarity	of	
Racket;	other	object	systems	may	have	different	
syntax	or	different	conventions	 for	this	situation.

And	we	do	the	same	thing	for	each	
other	function	that	is	different	in	
each	subclass.	 	In	this	example,

these	are	in-this?	and	next-speed.

We	document	this	by	adding	a	new	
interface

;; Open hooks (abstract methods): these
;; methods must be supplied by each subclass.

(define DraggableWidgetHooks<%>
(interface ()

;; Int Int -> Boolean
;; is the given location in this widget?
in-this?

;; -> Int
;; RETURN: the next x position or speed
;; of this widget
next-x-pos
next-speed

))

;; We require each subclass to implement the
;; Hooks interface of its superclass:

(define Ball%
(class* DraggableWidget%

(SBall<%> DraggableWidgetHooks<%>)

..etc..

))

17

We	didn't	include	 add-to-
scene	in	this	list	because	
it's	already	in	SBall<%>

As	always,	we	need	to	document	
this	design.		We	do	this	by	adding	a	
new	interface	that	lists	the	
methods	 that	must	be	supplied	 by	
any	subclass	of	DraggableWidget%.

What	we	have	accomplished	so	far

So	now	the	only	differences	between	Ball% and	Square% are	in	
methods:

add-to-scene
in-this?
next-x-pos
next-speed

These	are	the	methods	that	deal	with	the	geometry	of	squares	and	
balls	so	naturally	they	will	be	different.		Everything	else	is	taken	care	of	
in	the	superclass.

So	Ball%	and	Square%	consist	only	of	these	methods	and	the	fields	and	
functions	they	depend	on.

18

New	Ball%	class
(define Ball%
(class* DraggableWidget%

;; must implement SBall + the open hooks from the
superclass

(SBall<%> DraggableWidgetHooks<%>)

;; inherit all these fields from the superclass:

;; initial values of x, y (center of ball) and
;; speed:
(inherit-field x y speed)

;; position of the wall, updated by update-wall-pos
(inherit-field wall-pos)

;; this field is local to Ball%
(field [radius 20])

(super-new)

;; -> Integer
;; position of the ball at the next tick
(define/override (next-x-pos)
(limit-value
radius
(+ x speed)
(- wall-pos radius)))

;; Number^3 -> Number
;; WHERE: lo <= hi
;; RETURNS: val, but limited to the range [lo,hi]
(define (limit-value lo val hi)
(max lo (min val hi)))

;; -> Integer
;; RETURNS: the velocity of the ball at the next tick
(define/override (next-speed)
(if
(< radius (next-x-pos) (- wall-pos radius))
speed
(- speed)))

(define/override (add-to-scene s)
(place-image
(circle radius
"outline"
"red")

x y s))

;; in-this? : Integer Integer -> Boolean
;; GIVEN: a location on the canvas
;; RETURNS: true iff the location is inside this.
(define/override (in-this? other-x other-y)
(<= (+ (sqr (- x other-x)) (sqr (- y other-y)))

(sqr radius)))

))

19

The	new	Ball%	class	consists	only	of	things	that	are	specific	to	
Balls.		All	the	things	that	are	in	common	with	Squares	have	
been	moved	up	 to	their	generalization	DraggableWidget%	.

The	Process	in	Pictures

• We	start	with	the	two	classes	Ball% and	
Square%.		The	black	parts	are	the	same	and	
the	red	parts	are	different.

20

Ball% =
(class*	object%	(SBall<%>)
(field	x	y)
(define	radius	...)

(define/public	(add-to-scene	s)
...)

(define/public	
(after-button-down	mx	my)
...(in-this?	mxmy)))

(define/public	(after-tick)	
...(next-x-pos)...)

(define	(in-this?	mxmy)	...)

(define	(next-x-pos)	...))

Square%	=
(class*	object%	(SBall<%>)
(field	x	y)
(define	size	...)

(define/public	(add-to-scene	s)
...)

(define/public
(after-button-down	mx	my)
...(in-this?	mxmy)))

(define/public	(on-tick)	
...(next-x-pos)...)

(define	(in-this?	mxmy)	...)

(define	(next-x-pos)	...))

Starting	Code
21

Step	1:	Turn	differing	functions	into	
methods

• The	first	thing	we	do	is	to	turn	the	differing	
functions	into	methods.	Each	call	(f	arg)	is	
replaced	by	(send	this	f	arg)	.

• This	only	comes	up	because	Racket	has	both	
methods	and	functions.

• If	we	were	in	a	language	where	everything	
was	a	method,	this	wouldn't	be	an	issue.

22

Step	2:	Move	Common	Methods	into	a	
Superclass

• We	move	the	common	methods	into	a	
superclass.		We	can	think	of	the	common	
method	in	the	superclass	as	an	abstraction	or	
generalization	of	the	methods	in	the	classes.

23

Step	3:	Make	different	methods	into	
abstract	methods

• In	the	past,	we	generalized	a	set	of	functions	by	writing	a	
single	function	with	an	extra	argument.		Depending	on	the	
value	of	the	extra	argument,	we	could	get	back	one	of	our	
original	functions.

• Now	instead	of	two	functions,	we	have	two	methods,	
which	differ	only	by	being	in	two	different	classes.	

• When	we	move	the	method	into	the	superclass,	the	single	
method	can	behave	like	either	of	the	original	two	methods.		

• We	don't	give	the	generalized	method	an	extra	argument.		
Instead,	depending	on	which	class	the	method	is	called	
from,	we	get	back	the	behavior	of	one	of	our	original	
methods.

• We	call	this	"specialization	by	subclassing."

24

Specialization	in	11-4-turn-
differences-into-methods.rkt

• In	this	example,	the	on-mouse	method	in	
DraggableObj%	will	behave	like	the	original	
on-mouse	method	of	Ball%	if	it	is	called	from	
Ball%.		It	will	behave	like	the	original	on-
mouse	method	of	Square%	if	it	is	called	from	
Square%.

• Let's	see	how	this	works.

25

Ball% =	(class*	DraggableWidget%
(SBall<%>	
DraggableWidgetHooks<%>)
(inherit-field	x	y)
(define	radius	...)

(define/public	(add-to-scene	s)
...)

(define/public
(in-this?	mxmy)	...)

(define/public
(next-x-pos)	...))

Square%		=	(class*	DraggableWidget%
(SBall<%>	
DraggableWidgetHooks<%>)
(inherit-field	x	y)
(define	size	...)

(define/method	(add-to-scene	s)
...)

(define/public
(in-this?	mxmy)	...)

(define/public
(next-x-pos)	...))

Move	common	methods	into	superclass

DraggableWidget% =	(class*	object%
(SBall<%>)
(field	x	y)

(define/public	
(after-button-down	mx	my	mev)
...(send	this	in-this?	mx my)...))

(define/public	 (on-tick)	
...(send	this	next-x-pos)...)

)

26

What	this	accomplishes
• We	can	think	of	the	common	method	in	the	superclass	
as	an	abstraction	or	generalization	of	the	methods	in	
the	classes.

• In	the	past,	we	generalized	a	set	of	functions	by	writing	
a	single	function	with	an	extra	argument.		Depending	
on	the	value	of	the	extra	argument,	we	could	get	back	
one	of	our	original	functions.

• Now	instead	of	two	functions,	we	have	two	methods,	
which	differ	only	by	being	in	two	different	classes.	

• When	we	move	the	method	into	the	superclass,	the	
single	method	can	behave	like	either	of	the	original	
two	methods.		

27

Subclassing in	Action

• The	animation	on	the	next	slide	shows	how	
sending	a	circle	an	after-button-down
message	winds	up	calling	the	circle’s	version	
of	in-this?			

• If	we	sent	a	square	an	after-button-down
message,	then	we	would	wind	up	calling	the	
square’s	version	of	in-this?,	in	exactly	the	
same	way.

28

Ball% =	(class*	DraggableObj%
(inherit-field	 x	y)
(define	 radius	...)

(define/public	 (add-to-scene	s)
...)

(define/public
(in-this?	mx my)	...)

(define/public
(next-x-pos)	 ...))

DraggableObj% =	(class*	object%
(field	x	y)

(define/public	
(after-button-down	mx	my	mev)
...(send	this	in-this?	mx my)...))

(define/public	 (on-tick)	
...(send	this	next-x-pos)...)

)

x	=	20
y	=	30

radius	=	5
this	=	

circle1

(send	circle1	add-to-scene	s)

Every	object	knows	its	own	methods	#1 29

Ball% =	(class*	DraggableObj%
(inherit-field	 x	y)
(define	 radius	...)

(define/public	 (add-to-scene	s)
...)

(define/public
(in-this?	mx my)	...)

(define/public
(next-x-pos)	 ...))

DraggableObj% =	(class*	object%
(field	x	y)

(define/public	
(after-button-down	mx	my)
...(send	this	in-this?	mx my)...))

(define/public	 (on-tick)	
...(send	this	next-x-pos)...)

)

x	=	20
y	=	30

radius	=	5
this	=	

circle1

(send	circle1	after-button-down	mx	my)

Every	object	knows	its	own	methods		#2

this still	refers	to	
circle1

So	circle1's	in-this?method	 is	
the	one	that	gets	called.

30

4.	Generalize	Similar	Methods	by	
Adding	Abstract	Methods	for	the	

Differences
• We	can	do	the	same	thing	with	methods	that	
differ	only	in	small	ways.

• We	move	the	common	part	of	the	method	
into	the	superclass,	and	have	it	refer	to	the	
differing	parts	by	calling	a	method	in	the	
subclass.

• Here's	an	example.

31

Before:
In DraggableObject%:
(abstract add-to-scene)

In Ball%:
(define/override (add-to-scene s)

(place-image
(circle radius

(if selected? "solid" "outline")
"red")

x y s))

In Square%:
(define/override (add-to-scene s)

(place-image
(square size

(if selected? "solid" "outline")
"green")

x y s))
32

abstract creates	an	abstract	method,	 so	
that	DraggbleObject%will	satisfy	

StatefulWorldObj<%>	.
An	abstractmethod	must	be	defined	by		
a	define/override in	every	subclass.

After:
In DraggableObject%:
(define/public (add-to-scene s)

(place-image
(send this get-image)
x y s))

(abstract get-image)

In Ball%:
(define/override (get-image)
(circle radius

(if selected? "solid" "outline")
"red"))

In Square%:
(define/override (get-image)
(square size

(if selected? "solid" "outline")
"green"))

33

add-to-scene is	now	in	the	superclass.		
It	uses	an	abstract	method	called	get-
image to	retrieve	the	image.		
Each	subclass	must	provide	a	definition	
for	get-image.

This	is	the	Template	and	Hook	pattern

• The	superclass	has	incomplete	behavior.
– Superclasses leave	hooks to	be	filled	in	by	subclass.

• Parameterize	a	superclass	by	inheritance
• Subclasses	supply	methods	for		the	hooks;	these	
methods	are	called	"at	the	right	time"

• This	is	how	"frameworks"	work.		A	framework	
typically	consists	of	a	large	set	of	general-purpose	
classes	that	you	specialize	by	subclassing.		Each	
subclass	contains	special	purpose	methods	that	
describe	the	specialized	behavior	of	objects	of	
that	subclass.

34

big-bang is	sort	of	like	this:	you	tell	it	what	the	hook	
functions	are	for	each	event	and	it	calls	each	function	
when	the	event	occurs.

Summary:	Recipe	for	generalizing	
similar	classes

1. Turn	differing	functions	into	methods
2. Move	identical	methods	into	a	superclass
3. Make	different	methods	into	abstract	

methods	
4. Generalize	similar	methods	by	adding	

abstract	methods	for	the	differences

35

Summary	of	the	Files
• Study	the	relevant	files	in	the	examples	folder:
– 11-1-flashing-balls.rkt
– 11-2-squares.rkt
– 11-3-unify-try1.rkt
– 11-4-turn-differences-into-methods.rkt
– 11-5-generalize-methods-in-superclass.rkt
– 11-6-after-review.rkt

• Here	I’ve	cleaned	up	and	produced	the	file	as	it	might	
appear	after	Step	6:	Program	Review.

– 11-7-separate-files/
• Here	I’ve	separated	the	system	into	several	files,	with	one	
file	per	class.

36

Next	Steps

• Study	the	relevant	files	in	the	examples	folder:
– Do	some	diffs	so	you	see	exactly	what	changes	
between	one	version	and	the	next.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

37

